´óÏó´«Ã½

Home
Molecular signaling and bioenergetics

Main content

Articles

Høyland LE, VanLinden MR, Niere M, Strømland Ø, Sharma S, Dietze J, TolÃ¥s I, Lucena E, Bifulco E, Sverkeli LJ, Cimadamore-Werthein C, Ashrafi H, Haukanes KF, van der Hoeven B, Dölle C, Davidsen C, Pettersen IKN, Tronstad KJ, Mjøs SA, Hayat F, Makarov MV, Migaud ME, Heiland I, Ziegler M (2024):ÌýSubcellular NAD+Ìýpools are interconnected and buffered by mitochondrial NAD+. Nat. Metab. 6, doi:Ìý.

Ferrario E,ÌýKallio JP,ÌýEmdadi M,ÌýStrømland Ø,ÌýRack JGM,ÌýZiegler M (2024):ÌýEvolution of fungal tuberculosis necrotizing toxin (TNT) domain-containing enzymes reveals divergent adaptations to enhance NAD cleavage. Protein Sci. 33, doi: .

Ferrario E, Kallio JP, Strømland Ø, Ziegler M (2023): Novel calcium-binding motif stabilizes and increases the activity ofÌýAspergillus fumigatusÌý±ð³¦³Ù´Ç-±·´¡¶Ù²¹²õ±ð.Ìýµþ¾±´Ç³¦³ó±ð³¾¾±²õ³Ù°ù²âÌý62, doi:Ìý.

Houry D, Raasakka A, Ferrario E, Niere M, Bifulco E, Kursula P,ÌýZiegler M (2023): Identification of structural determinants of nicotinamide phosphoribosyl transferase (NAMPT) activity and substrate selectivity.ÌýJ. Struct. Biol. 215, doi: .

Sverkeli LJ,ÌýHayat F,ÌýMigaud ME,ÌýZiegler M (2021): Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD.ÌýBiomoleculesÌý11: 1044,Ìý»å´Ç¾±:Ìý.

Strømland Ø,ÌýKallio JP,ÌýPschibul A,ÌýSkoge RH, Harðardóttir HM, Sverkeli LJ, Heinekamp T, Kniemeyer O, Migaud ME,ÌýMakarov MV,ÌýGossmann TI, Brakhage AA, Ziegler M (2021): Discovery of fungal surface NADases predominantly present in pathogenic species. Nat. Commun. 12, doi:Ìý.

Bockwoldt M, Houry D, Niere M, Gossmann TI, Reinartz I, Schug A, Ziegler M, Heiland IÌý(2019): Identification of evolutionary and kinetic drivers of NAD-dependent signaling.ÌýProc. Natl. Acad. Sci. U. S. A.Ìý116, doi:Ìý.

Buonvicino D,ÌýMazzola F,ÌýZamporlini F,ÌýResta F,ÌýRanieri G,ÌýCamaioni E,ÌýMuzzi M,ÌýZecchi R,ÌýPieraccini G,ÌýDölle C,ÌýCalamante M,ÌýBartolucci G,ÌýZiegler M,ÌýStecca B,ÌýRaffaelli N,ÌýChiarugi A (2018):ÌýIdentification of the nicotinamide salvage pathway as a new toxification route for antimetabolites.ÌýCell. Chem. Biol. 25, doi: .

Skoge RH, Ziegler M (2016):ÌýSIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J. Cell Sci. 129, doi: .

VanLinden MR, Dölle C, Pettersen IK, Kulikova VA, Niere M, Agrimi G, Dyrstad SE, Palmieri F, Nikiforov AA, Tronstad KJ, Ziegler M (2015):ÌýSubcellular distribution of NAD+Ìýbetween cytosol and mitochondria determines the metabolic profile of human cells. J. Biol. Chem. 290, doi: .

Love NR, Pollak N, Dölle C, Niere M, Chen Y, Oliveri P, Amaya E, Patel S, Ziegler M (2015): NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc. Natl. Acad. Sci. U. S. A. 112, doi: .

Rack JG, VanLinden MR, Lutter T, Aasland R, Ziegler M (2014): Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform. J. Mol. Biol. 426, doi: .

Stavrum AK, Heiland I, Schuster S, Puntervoll P, Ziegler M (2013): Model of tryptophan metabolism, readily scalable using tissue-specific gene expression data. J. Biol. Chem. 288, doi: .

Niere M, Mashimo M, Agledal L, Dölle C, Kasamatsu A, Kato J, Moss J, Ziegler M (2012):ÌýADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J. Biol. Chem. 287,Ìý»å´Ç¾±: .

Nikiforov A, Dölle C, Niere M, Ziegler M (2011): Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286, doi: .

Dölle C, Niere M, Lohndal E, Ziegler M (2010): Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell. Mol. Life Sci. 67, doi: .

Lau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M (2010): Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. J. Biol. Chem. 285, doi: .

Dölle C, Ziegler M (2009): Application of a coupled enzyme assay to characterize nicotinamide riboside kinases. Anal. Biochem. 385, doi: .

Niere M, Kernstock S, Koch-Nolte F, Ziegler M (2008). Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol. Cell. Biol. 28, doi: .

Pollak N, Niere M, Ziegler M (2007): NAD kinase levels control the NADPH concentration in human cells. J. Biol. Chem. 282,Ìý»å´Ç¾±:Ìý.

Berger F, Lau C, Ziegler M (2007): Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc. Natl. Acad. Sci. U. S. A. 104, doi: .

Berger F, Lau C, Dahlmann M, Ziegler M (2005): Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, doi: .

Reviews

Ìý

Migaud ME,ÌýZiegler M,ÌýBaur JA (2024):ÌýRegulation of and challenges in targetingÌýNAD+Ìýmetabolism.ÌýNat. Rev. Mol. Cell. Biol. 25, doi: .

Strømland Ø,ÌýDiab J,ÌýFerrario E,ÌýSverkeli LJ,ÌýZiegler M (2021): The balance between NAD+Ìýbiosynthesis and consumption in ageing. Mech. Ageing. Dev. 199, doi: .

Strømland Ø, Niere M, Nikiforov AA, VanLinden MR, Heiland I,ÌýZiegler M (2019):ÌýKeeping the balance in NAD metabolism.ÌýBiochem. Soc. Trans.Ìý47, doi:Ìý. Review

Nikiforov A, Kulikova V, Ziegler M (2015): The human NAD metabolome: Functions, metabolism and compartmentalization.ÌýCrit. Rev. Biochem. Mol. Biol.Ìý50, doi: .

Dölle C, Skoge RH, Vanlinden MR, Ziegler M (2013): NAD biosynthesis in humans - Enzymes, metabolites and therapeutic aspects.ÌýCurr. Top. Med. Chem.Ìý13,Ìý»å´Ç¾±: .

Koch-Nolte F, Ziegler M (2013): Physiology of ADP-ribosylation.ÌýFEBS J.Ìý280, doi: .

Schüler H, Ziegler M (2013): Pharmacology of ADP-ribosylation.ÌýFEBS J.Ìý280, doi: .

Dölle C, Rack JG, Ziegler M (2013): NAD and ADP-ribose metabolism in mitochondria.ÌýFEBS J.Ìý280, doi: .

Chiarugi A, Dölle C, Felici R, Ziegler M (2012):ÌýThe NAD metabolome - AÌýkey determinant of cancer cell biology.ÌýNat. Rev. CancerÌý12, doi: .

Koch-Nolte F, Fischer S, Haag F, Ziegler M (2011): Compartmentation of NAD+-dependent signalling.ÌýFEBS Lett.Ìý585, doi:.

Agledal L, Niere M, Ziegler M (2010): The phosphate makes a difference: Cellular functions of NADP.ÌýRedox Rep.Ìý15, doi: .

Lau C, Niere M, Ziegler M (2009): The NMN/NaMN adenylyltransferase (NMNAT) protein family.ÌýFront. Biosci.Ìý14, doi: .

Koch-Nolte F, Haag F, Guse AH, Lund F, Ziegler M (2009): Emerging roles of NAD+Ìýand its metabolites in cell signaling.ÌýSci. Signal.Ìý2, doi: .

Pollak N, Dölle C, Ziegler MÌý(2007): The power to reduce: pyridine nucleotides - small molecules with a multitude of functions. Biochem J. 402,Ìý»å´Ç¾±:Ìý.

Billington RA, Bruzzone S, De Flora A, Genazzani AA, Koch-Nolte F, Ziegler M, Zocchi EÌý(2006): Emerging functions of extracellular pyridine nucleotides. Mol Med. 12, doi:Ìý

Ziegler MÌý(2005): A vital link between energy and signal transduction. FEBS J. 272, doi:Ìý.

Oei SL, Keil C, Ziegler MÌý(2005): Poly(ADP-ribosylation) and genomic stability. Biochem Cell Biol. 83, doi: .

Berger F, Ramírez-Hernández MH, Ziegler MÌý(2004): The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci. 29, doi:Ìý.

Ìý

Ìý